Сайт переехал physreal.com

science
Знания, не рождённые опытом, бесплодны и полны ошибок.
Леонардо да Винчи



Copyleft © 2004 - 2024
physics.com.ua

Электронный web-журнал Physics.com.ua

Научные исследования и технические разработки по физике. Новости, факты, люди, интервью. Теория и практика. Каталог статей. Каталог ссылок. Форум. Научно-технические разработки. Документация, библиотека.
Палата мер и весов. Работа
для физиков. Юмор, сатира, лирика.

Контакты Главная | Стартовая | Избранное | Поиск
 

Потеря пароля | Регистрация

   
БАК остро нуждается в детекторах для фиксирования элементарных частиц
Высадка космонавтов на Луну будет осуществлена, в лучшем случае, в 2033–2034 годах
Гранты для обучения в аспирантуре по естественным наукам в Германии (программа SALSA)
Видео. Поиск редких процессов на коллайдерах
Пьезо-оптомеханический преобразователь связывает звук, свет и радио
Программу Наноконструктор проекта nanoModel можно скачать бесплатно
VII Международная школа-конференция молодых ученых и специалистов - Современные проблемы физики 2016
Ученые получили температуру ниже абсолютного нуля
С 10-го по 21-е сентября администрация уходит в отпуск

  Новости  
  Новости физики  
  Науку делают люди  
  Гранты, олимпиады, конкурсы и стипендии  
  Знаете ли Вы что...  
  Приборы, научно-технические разработки  
  Программные продукты  
  Конференции, семинары, школы и форумы  
  Физики шутят  
  Новости нашего журнала  
  Экспорт данных в формате RSS  
  Материалы  
  Каталог научных статей  
  Банк рефератов  
  Блог  
  PACS  
  Исторический календарь  
  Нобелевские лауреаты  
  Голосования и опросы  
  Информационные партнёры  
  Полезные ссылки  
  Палата мер и весов  
  Технические требования к предоставляемой информации  
rss2email
Новости электронного web-журнала Physics.com.ua




Рассылки Subscribe.Ru
Лента "Новости электронного web-журнала Physics.com.ua"
  Голосования и опросы  
 

Глобальное потепление - это...

результат неконтролируемого загрязнения атмосферы
результат естественного изменения климата
кто-то его незаметил
средство наживы для экологических организаций



Всего голосов: 2730
Комментариев: 3

 
  Статистика  
 
Яндекс цитирования Rambler's Top100

 
  Реклама  
 

 
 
НОВОСТИ




Экспорт новостей в формате RSS по выбранным категориям

2007-08-10 09:33:52, обсуждение: 0
ЗНАЕТЕ ЛИ ВЫ ЧТО... | ПРОГНОЗ

Водородная энергетика и нанотехнологии

Предполагается, что водородная энергетика снизит объем выбросов парниковых газов, улучшит экологическую обстановку больших городов и позволит отказаться от эксплуатации углеводородов, запас которых ограничен. Ожидается, что нанотехнологии сыграют ключевую роль в будущей водородной экономике.

Развитие водородной энергетики: перспективы

Обзор инвестиций показывает основных интересантов. Новостные источники пестрят сообщениями о том, что «Норильский никель» инвестирует в водородную энергетику совместно с РЖД, металлургический гигант POSCO делает крупный проект в данной сфере, а GM вложил $1 млрд. в разработку водородных автомобилей.

Беглый взгляд на объем инвестиций в данную область впечатляет - страны ЕС вкладывают в среднем по €50 - 60 млн. в год, Япония – порядка $270 млн., а в США будет потрачено около $1,7 млрд. в течение ближайших 5 лет на развитие инициативы по увеличению доли водородного топлива.

Программы, подобные американской, приняты практически во всех странах, в которых развитие водородной энергетики выделяется в качестве одной из приоритетных целей. В такую программу входят следующие ключевые пункты: разработка водородных топливных элементов, построение инфраструктуры обеспечения водородом и улучшенные автомобильные технологии.

В свете вышеперечисленного становится понятно, почему металлурги вкладываются в это направление: массовое производство топливных элементов по существующим технологиям приведет к сильному росту спроса на металлы платиновой группы, использующиеся в качестве катализаторов. Помимо этого, грядет обновление автопарка, а это тоже потребует металла для производства шасси, корпусов и других элементов автомобилей. В ключе массовой замены автомобилей с двигателем внутреннего сгорания на автомобили с водородным приводом становится понятен интерес автомобильных концернов и, в частности, нашего ОАО РЖД.

Но вот интересная информация к размышлению: TOTAL строит водородную инфраструктуру в Германии, Shell в США, Exxon помогает GM создать риформер для выработки водорода, а BP создает с другим нефтяным гигантом совместную компанию, которая будет работать исключительно в области водородных технологий. Зачем нефтяникам водородный проект? На первый взгляд – это инициатива, требующая огромных вложений, и приводящая к тому, что вместо бензина автомобили будут использовать водород, что впрямую скажется на прибылях нефтяных компаний. Но есть и другой ответ на этот вопрос, который будет прояснен чуть позже.

Нанотехнологии и переход к водородной энергетике

Если рассмотреть «водородные программы» правительств разных стран, становится видно, что их целью является достижение «технологической готовности» такого уровня, на котором станет возможным принимать решения о коммерциализации этой технологии и сателлитных разработок в масштабах промышленности.

На достижение столь амбициозных целей отпущено крайне мало времени: в качестве дат полного перехода к повсеместному использованию водородного топлива называются 2015, 2020 и 2025 гг. Нанотехнологии могут существенно помочь разработкам в этом направлении, поскольку уже сейчас предоставляют решения для каждого из трех ключевых аспектов водородной энергетики – производства водорода, его хранения и создания эффективных топливных ячеек.

Чтобы избежать терминологической путаницы, заметим, что «водородный автомобиль», о котором идет речь в настоящей статье - это не автомобиль с двигателем внутреннего сгорания, использующим в качестве горючего водород или смесь водорода с природным газом. Имеется в виду «водородный автомобиль» как машина с электрическим приводом, где химическая энергия топлива напрямую преобразуется в электрическую энергию, без механических или тепловых процессов. Чистый выхлоп – тепло и вода.

Первая существенная проблема, которую необходимо решить для перехода на водородную основу – это собственно производство водорода. Топливные ячейки на водороде заряжаются водородом через преобразование жидких топлив (бензин, этанол, метанол) в водород прямо внутри самой ячейки, либо используют водород, произведенный где-то в другом месте и хранящийся в баке автомобиля.

Второй способ влечет за собой серьезную инфраструктурную задачу: поскольку пока еще не существует заправочных станций с водородной колонкой, их потребуется построить, а также создать и отладить всю логистическую цепочку – от завода по выработке водорода до бака автомобиля.

Производство водорода может осуществляться с использованием самых разных источников. Наиболее экологически чистые технологии находятся довольно далеко в стороне от главного направления разработок. Эти технологии используют возобновляемую энергию для обеспечения электричеством процесса электролиза воды, получая в итоге водород и кислород.

Технологией с самым высоким уровнем отходов является газификация угля. Как минимум до того времени, когда будут разработаны высокоэффективные способы захвата и отделения углерода. Разумеется, еще можно использовать атомную энергию для обеспечения электролизных станций электричеством – АЭС строятся, и на обеспечение безопасности эксплуатации этих станций тратится много усилий.

Если взять в качестве примера США, чей «водородный комплекс» можно считать одним из самых передовых, и попытаться выяснить, каким способом получают водород в этой стране, то получается следующая картина. Порядка 95% производимого на сегодняшний день в США водорода (это составляет около 50% мирового производства) – порядка 9 млн. тонн ежегодно – производится из метана при помощи высокотемпературного пара.

Становится понятно, зачем нефтяникам водородные технологии. Пока политики и энергетики говорят о «чистом будущем», которое наступит в эру водородной экономики, технологический маршрут Министерства энергетики США в данном направлении предусматривает подавляющее большинство – 90% – водородной генерации на основе ископаемых энергоносителей – угля, газа и нефти – с дополнительной опорой на атомные электростанции.

Другими словами, выбросы парниковых газов останутся на прежнем уровне – только уже не из автомобильных выхлопных труб, а со станций генерации водорода. Существенным препятствием в создании чистых технологий производства водорода является их цена. Пока правительство не утвердит использование водорода в качестве основного топлива, или не увеличит в разы налоги на использование топлив на базе ископаемых энергоносителей, «эквивалент литра бензина» будет основным эталоном для водителей при принятии решения, какое топливо им покупать. А производство водорода из нефти, газа и угля на сегодняшний день является наиболее экономически оправданным методом.

Основной вклад нанотехнологий в «чистое» производство водорода заключается в том, что материалы, созданные с их помощью, могут использоваться в солнечных батареях. Также известны применения результатов нанотехнологических разработок в области катализаторов для процесса электролиза. Основные поиски сейчас нацелены на то, чтобы создать высокоэффективное устройство, которое можно заправить водой, выставить на солнце и получить водород без использования каких-либо внешних энергетических источников.

У солнечных батарей есть потенциал, который поможет воплотить эту идею в жизнь, однако пока мешает этому их низкая эффективность и, наоборот, слишком высокая цена. Правда, похоже, что солнечная энергетика не может покрыть все потребности в обеспечении станций генерации водорода нужным количеством энергии. Если представить, что вся солнечная энергия будет без потерь запасаться в топливные ячейки, то даже при этом условии получаются результаты, которые вряд ли удовлетворят потребителей энергии.

Статистика утверждает, что мировое потребление энергии в 2004 году составило около 404 квадриллионов британских тепловых единиц, или 427,4 млрд. ГДж. С одного квадратного метра поверхности можно в среднем генерировать 250 Вт. Для выработки требуемого количества энергии потребуется площадь солнечных батарей в размере 95 млн. кв.км., что составляет около 2/3 всей поверхности суши планеты. А по прогнозу, потребление энергии к 2025 вырастет более чем в 1,5 раза – и тогда придется покрыть почти всю поверхность суши солнечными батареями.

Таким образом, вопрос повышения КПД выходит на первый план. Есть два основных типа солнечных батарей. Один из них производит водород напрямую посредством электрохимического процесса, преобразовывающего солнечную энергию в химическую. Для повышения КПД этого типа батарей существует материал с наноразмерными электродами, который увеличивает отношение поверхности к объему и тем самым повышает эффективность установки.

Другой тип солнечных батарей – фотоэлектрический. С помощью установок этого типа получаемое электричество может направляться на производство водорода путем электролиза воды. Эксперименты с массивами нанопроводов и другими наноструктурными материалами показали, что их применение может увеличить эффективность и таких батарей.

Не вдаваясь в детали, можно сказать, что нанотехнологии в будущем сыграют значительную роль в разработке высокоэффективных типов солнечных батарей, требующихся для создания жизнеспособной альтернативы добыче водорода при помощи ископаемых энергоносителей.

Проблема хранения водорода

Следующая важная задача – это задача хранения водорода. Хранение водорода на борту автомобиля в количестве, необходимом для передвижения, представляет собой серьезный вызов инженерам. По самым грубым подсчетам, для перемещения на расстояние в 100 км требуется около 1 кг водорода. Это значит, что необходимо возить в баке около 5 кг водорода, чтобы иметь возможность покрыть средний дневной пробег. Плотность водорода составляет 0,1 грамма на литр объема при комнатной температуре, следовательно, потребуется разместить 50 тыс. литров водорода в баке.

Есть три способа хранения такого объема: в виде сжатого газа с высокой степенью компрессии, в качестве жидкости (что требует сильного охлаждения), или в твердом виде.

Первый способ использовался в ранних моделях автомобилей, работающих на водороде. Конструкторы разных автомобильных платформ пытаются создать хранилища, которые бы соответствовали техническим требованиям, и при этом имели бы приемлемую цену, но пока рано говорить о каких-то значительных подвижках в данной области.

В прошлом году автомобильная компания Honda анонсировала концепт-кар FCX, который может хранить на борту 5 кг водорода при давлении около 350 кг/см2, причем его бак имеет размеры, позволяющие разместить его на автомобиле средних габаритов.

Использовать давление в десятки килограммов на кв. см. для хранения сжатого водорода, или охлаждение в до минус 252 градусов Цельсия для превращения его в жидкость представляет определенную угрозу безопасности потребителей. В этом свете подходящим альтернативным способом является хранение водорода в виде металлогидридов в хранилище, основанном на принципах адсорбции. В такой емкости водород впитывается во внутренние поверхности пористого материала, и может высвобождаться при помощи тепла, электричества или химической реакции. Известно довольно много металлов, которые могут выступать в качестве наполнителя, способного запасать водород.

Нанотехнологии и здесь могут помочь в решении таких задач. Методы, используемые при создании наноматериалов, позволяют управлять физическими характеристиками получаемых композитов. Это дает возможность формировать удерживающие эффекты нужной силы и получать большое соотношение площади поверхности адсорбента к его объему.

Подобные свойства полезны для разработки наполнителей для хранилищ водорода «третьего типа» - на базе адсорбции. Например, исследователи сейчас изучают свойства полимерных наноструктурированных материалов с целью разработки нового типа адсорбентов для хранилищ водорода. На сегодняшний день идет предварительное тестирование новых материалов, и результаты испытаний выглядят вполне обнадеживающими.

Одностенные углеродные нанотрубки обладают большой поверхностной площадью и при этом имеют относительно малую массу. Эти характеристики нанотрубок, согласно общему убеждению, позволяют считать их одним из наиболее перспективных материалов для создания хранилищ водорода большой вместимости.

Теоретически, в таком хранилище может быть запасено около 7,7 массового процента, поскольку хемосорбция такого материала очень велика: на каждый атом углерода в нанотрубке возможно адсорбировать один атом водорода. В дополнение, последующая физическая адсорбция увеличивает вместимость хранилища еще больше. Так или иначе, некоторый скепсис в отношении хранилищ водорода на базе углеродных наонтрубок был обусловлен ошибками ранних, экспериментальных, стадий и разумная основа для разработки хранилищ водорода высокой вместимости уже заложена.

Создание эффективных топливных ячеек

Теперь перейдем к последней задаче. Это создание эффективных топливных ячеек, в которых химическая энергия водорода будет преобразовываться в кинетическую энергию движения с высоким КПД. Топливные ячейки, в принципе, являются зеркальным отображением батарей электролиза. В последних за счет воздействия электричества происходит разделение молекул воды на водород и кислород, а в топливных ячейках соединение водорода с кислородом производит электричество.

Главным препятствием для массового выпуска автомобилей на базе топливных ячеек сейчас является цена такого автомобиля. Стоимость топливной ячейки сейчас колеблется между $1 тыс. и $3 тыс. за киловатт установленной мощности. Чтобы выдержать конкуренцию с обычными автомобилями, использующими двигатели внутреннего сгорания, эта цифра должна снизиться более чем в 30 раз – до $30.

Существует несколько различных типов топливных ячеек, но кандидат номер один на применение в автомобилях – ячейки на основе полимерных электролитических мембран, также называемых «мембранами протонного обмена».

И установки электролиза, и топливные ячейки используют для работы дорогие платиновые электроды. Исследователи работают в двух направлениях снижения цены: минимизировать использование платины путем повышения каталитической отдачи через структуризацию катализаторов на наноуровне. Другое направление разработок ставит целью вообще исключить дорогие платиновые катализаторы, заменив их каким-нибудь другим катализатором, в котором наноструктурированная поверхность будет иметь те же каталитические свойства при более низкой цене.

Нанотехнологии непременно сыграют главную роль в будущей водородной экономике. вопрос только в том, когда эта экономика перейдет с генерации водорода из ископаемых энергоносителей на возобновляемые источники энергии. Судя по всему, это случится никак не раньше 2020 года.

Михаил Конюхов
R&D.CNews



БАК остро нуждается в детекторах для фиксирования элементарных частиц
Эффект рождения гидродинамических потоков от ультразвуковых волн
Создан безмагнитный кремниевый циркуляционный чип для диапазона миллиметровых волн
Физики из Национального института стандартов и технологий (США) добились одновременной квантовой запутанности сразу 219 ионов бериллия (9Be+)
Новый метод получения пучка спин-поляризованны позитронов
Состоялась церемония награждения премии Дирака
Вот что крест животворящий делает!
Приглашает ChipEXPO - ведущая российская выставка по микроэлектронике
Работающий прототип самого маленького в мире газотурбинного двигателя
Впервые удалось создать ферромагнетик с беспорядочным магнитным полем внутри