|
![]() |
|
Контакты | Главная | Стартовая | Избранное | Поиск |
2015-12-15 11:31:35, обсуждение: 0
Авторы работы воспользовались тем, что частицы, попавшие в луч лазера с неравномерной интенсивностью излучения, стремятся переместиться в точку с наименьшей плотностью энергии. Это явление связано с нагревом макроскопических частиц светом и носит название фотофореза. Слой газа, окружающий частицу, оказывается в тепловом равновесии с поверхностью частицы и внутри него возникает тепловой градиент. В результате более нагретые молекулы газа передают частице больший импульс, нежели молекулы, атакующие с холодной стороны — частица начинает смещаться в холодную область. Эффект фотофореза. Изображение: Niko Eckerskorn et al. / Phys. Rev. Applied, 2015 Волновой фронт спирально закрученного света (слева), карта интенсивности излучения (крайний правый столбец) и фаза волны света в поперечном срезе (посередине). Изображение: Wikimedia Commons В новой работе физики использовали луч лазера со спирально закрученным волновым фронтом. Такой тип излучения отличается тем, что его волновой фронт является не плоскостью или сферой, как у обычных источников, а поверхностью винта. Каждый его фотон несет помимо импульса еще и угловой момент — теоретически, тело, на которое мы будем светить таким лазером, начнет вращаться благодаря передаче этого момента. Схема эксперимента. Изображение: Niko Eckerskorn et al. / Phys. Rev. Applied, 2015 Картина интенсивности излучения в луче спирально закрученного света выглядит похожей на полую трубку: в центре наблюдается минимум, по краям — максимумы. Авторы поместили на пути такого излучения обыкновенную линзу, превратив трубку в конус. В эксперименте луч лазера был ориентирован вертикально вверх. Физики помещали в воронку графитовый шарик массой от 1 до 100 нанограмм (миллиардных долей грамма) и изучали его поведение с помощью микроскопа, расположенного перпендикулярно лучу. Как и ожидали авторы, мощность лазера, необходимая для удержания шариков, сильно зависела от давления окружающей атмосферы. Вместе с тем, ученым удалось показать, что оптическая воронка способна концентрировать частицы в небольшой области пространства — порядка нескольких микрометров. Зависимость мощности лазера, необходимой для удерживания шарика от давления окружающей атмосферы. Повышение требуемой можности в области низких давлений связано с изменением механизма удержания — решающую роль начинает играть давление излучения. Изображение: Niko Eckerskorn et al. / Phys. Rev. Applied, 2015 Главным применением для разработанной методики может стать позиционирование маленьких (субмикронных) биологических объектов для изучения их структуры. К примеру, для того, чтобы изучать структуры белков или даже вирусов с помощью XFEL — крупнейшего строящегося рентгеновского лазера — необходимо добиться того, чтобы в каждый момент лазерного импульса одна частица образца находилась в заданной 100-нанометровой области. Лучшие техники, разработанные на сегодняшний день, позволяют обеспечить точность лишь порядка 50 нанометров. Также оптическая воронка может работать как высокоточные весы, способные определять массу микроскопических частиц в диапазоне от нескольких пикограмм (триллионных долей грамма) до десятков нанограмм. Автор: Владимир Королёв.
Владимир Королёв
• БАК остро нуждается в детекторах для фиксирования элементарных частиц
|